Вписанная и описанная окружность: узнайте о ключевых элементах геометрии, таких как вписанные и описанные окружности треугольников. Поймите их свойства, методы нахождения и применение в решении задач. Подготовьтесь к контрольным работам и экзаменам с помощью этого теста для 8 класса.
1. Что такое вписанная окружность треугольника?
— Окружность, проходящая через все вершины треугольника.
— Окружность, касающаяся всех сторон треугольника. +
— Окружность, проходящая через середины сторон треугольника.
2. Что такое описанная окружность треугольника?
— Окружность, касающаяся всех сторон треугольника.
— Окружность, проходящая через все вершины треугольника. +
— Окружность, проходящая через середины сторон треугольника.
3. Какой радиус описанной окружности треугольника?
— Это расстояние от центра описанной окружности до любой вершины треугольника. +
— Это расстояние от центра вписанной окружности до точки касания.
— Это расстояние от центра описанной окружности до середины стороны треугольника.
4. Какой радиус вписанной окружности треугольника?
— Это расстояние от центра вписанной окружности до точки касания. +
— Это расстояние от центра описанной окружности до любой вершины треугольника.
— Это расстояние от центра вписанной окружности до середины стороны треугольника.
5. Где находится центр вписанной окружности треугольника?
— В точке пересечения биссектрис треугольника. +
— В точке пересечения медиан треугольника.
— В точке пересечения высот треугольника.
6. Где находится центр описанной окружности треугольника?
— В точке пересечения биссектрис треугольника.
— В точке пересечения медиан треугольника.
— В точке пересечения высот треугольника. +
7. Как называется расстояние от вершины треугольника до точки касания вписанной окружности?
— Высота.
— Биссектриса.
— Отрезок касательной. +
8. Как называется отрезок, соединяющий центр описанной окружности с вершиной треугольника?
— Радиус описанной окружности. +
— Радиус вписанной окружности.
— Медиана.
9. Какое утверждение верно для равностороннего треугольника?
— Центр вписанной окружности совпадает с центром описанной окружности. +
— Центр вписанной окружности находится в точке пересечения медиан.
— Центр описанной окружности находится в точке пересечения высот.
10. Что такое окружность, проходящая через середины сторон треугольника?
— Описанная окружность.
— Вписанная окружность.
— Окружность девяти точек. +
11. Как называется точка пересечения биссектрис треугольника?
— Центр вписанной окружности. +
— Центр описанной окружности.
— Ортоцентр.
12. Как называется точка пересечения медиан треугольника?
— Центр описанной окружности.
— Центр вписанной окружности.
— Центроид. +
13. Как называется точка пересечения высот треугольника?
— Центр описанной окружности. +
— Центр вписанной окружности.
— Центроид.
14. Какое утверждение верно для прямоугольного треугольника?
— Центр описанной окружности находится на середине гипотенузы. +
— Центр вписанной окружности находится на середине гипотенузы.
— Центр описанной окружности находится на середине катета.
15. Как называется точка касания вписанной окружности со стороной треугольника?
— Точка касания. +
— Точка пересечения.
— Точка пересечения высот.